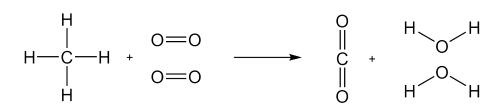


Checkpoint Task

Enthalpy changes Learner Activity

	-	4.
LVATE	normic	reactions
LXUII	ICIIIIC	<i>i</i> eaciioiis

C	othermic reactions					
	Write a definition of an exothermic reaction.					
	Draw an enthalpy profile diagram for an exothermic reaction.					
	Label the axes, ΔH and the activation energy.					
	Give an example of an exothermic reaction.					


Endothermic reactions

4.	Write a definition of an endothermic reaction.				
5.	Draw an enthalpy profile diagram for an endothermic reaction.				
	Label the axes, ΔH and the activation energy.				
6.	Give an example of an endothermic reaction.				
	nd enthalpy Write a definition of bond enthalpy. (You might know this term as 'bond energy'.)				

8.	In a chemical reaction, bonds in the reactants are broken, and new bonds are formed to make the products. Complete the following sentences.				
	Energy is	to k	oreak bonds.		
	Energy is	whe	en bonds are forme	d.	
	The overall energy change o	f a reaction is the			
Ca	lculations				
Re	member:				
	enthalpy change = energy requi	red to break bonds	– energy released	in making bonds	
or					
	$\Delta_r H = \Sigma$ (bond enthalpies in reaction)	cants) – Σ (bond enth	nalpies in products))	
9.	Use bond enthalpies to calculate	e the enthalpy chan	ge for the following	ı reaction.	
	$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$				
	Bond	H–H	Br–Br	H–Br	
	Bond enthalpy / kJ mol ⁻¹	438	193	366	
	Energy required to break bonds	:			
	Energy released in forming new	bonds:			
	Enthalpy change:				

10. Use bond enthalpies to calculate the enthalpy change for the combustion of methane.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Bond	C–H	C–C	O–H	C=O	O=O
Bond enthalpy / kJ mol ⁻¹	413	347	464	805	498

Energy required to break bonds:

Energy released in forming new bonds:

Enthalpy change:

11.

Bond	C–H	C–C	H–H	C=C
Bond enthalpy / kJ mol ⁻¹	413	347	436	612

ı	ICA	the	hand	energies	ahove	tΩ	Calculate
•		uic	DOLIG	CHUIGICS	abovc	w	Calculate

a\	the e	nthalpy	change	for the	hvdrod	enation	of ether	ne
u,		nunaipy	Griarige	ioi uic	nyurug	CHallon	OI CHICI	IC

$$H_2C=CH_2(g) + H_2(g) \rightarrow CH_3CH_3(g)$$

b) the enthalpy change for the cracking of decane

$$C_{10}H_{22}(g) \ \to \ H_2C = CH_2(g) \ + \ C_8H_{18}(g)$$

ı			
ı			
ı			
ı			
1			
1			
1			

12. Explain in terms of bond breaking and bond formation why combustion reactions are exothermic but cracking reactions are endothermic.