

AQA Biology

$\textbf{GCSE} \rightarrow \textbf{A} \text{ Level Biology transition}$

Answers to maths skills practice questions

1 Numbers and units

1 a 1 kJ = 1000 J, so 4 500 000 J = 4 500 000/1000 kJ = 4500 kJ 4.5 MJ **b** 1 MJ = 1000 kJ, so 4500 kJ =

2 1 m = 109 nm (there are a billion nanometre in a metre)

9.0 × 10-8 m = 9.0 × 10-8 × 109 nm = 9.0 × 10-8 + 9 nm = 9.0 × 10 nm = 90 nm

1.20 x 10-7 m = 1.20 x 10-7 x 109 nm = 1.20 x 10-7 + 9 nm = 1.20 x 100 nm = 120 nm

Range = 90 nm to 120 nm

3	a 1011	b 10 ₁₂
	c 1000 + 1000 = 200	d 100 - 0.01 = 99.99
4	a 10₁ or 10	b 10-3 or 0.001
	c 106 or 1 000 00	d 100 ₂ ÷ 100 = 100 or 10 ₂
5	a 4 mm	b 130 s
	c 31 300 µl	d 0.000 104 mg
6	a 57 µm	b 8.6 L or 8.6 dm₃
	c 68 s	d 0.09 mm

2 Decimals, standard form, and significant figures

1	0.0)214 cm	12 0.0218	cm ₂	0.03	cm2	0.034	cm ₂
2	12	.03 cm	12.901 cn	n 2	2 cm	22.0	03 cm	22.25 cm
3	а	3.06×	:10₃ kJ	b	1.4×1	05 kg		
	С	1.8×1	0-4 m	d	4×10-	-6 m		
4	a 1×10 ₂			b 1×104				
	c 1×10-2		d 2.	1×107				
5	Give the following as			s deci	imals.			
	a 1 000 000 b 4 700 000 000							
	c 1 200 000 000 000 d 0.000 796							
6	a 7600 g / 7640 g		b 28 m / 27.5 m					
	c 4	l.3g/4	.33 g	d $6.0 \times 10_2 \text{m} / 5.00 \times 10_2 \text{m}$				
7		1.2 ×	104 g					

3 Working with formulae

1 *M*? l = 6.6 mm $O = 165 \mu$ m Change to same units: either both mm or both μ m or both m: 165 μ m = 0.165 mm $M = l/O = 6.6/0.165 = \times 40$

Oxford A Level Sciences

AQA Biology

5 mm

- 2 Area = $0.5 \times 2 \text{ cm} \times 9 \text{ cm} = 9 \text{ cm}_2$
- 3 Area = π r₂ = π × (0.7 µm)₂ = π × (0.7 × 10-6 m) × (0.7 × 10-6 m) = 1.5 µm₂
- **4** N₀ = 24

6

7

7 days = 7×24 hours = 168 hours

so n = 168 ÷ 20 = 8.4

Nt = 24 x 28.4 = 8107 cells

5 N = 96 + 4 + 22 + 3 = 125 animals found

so
$$D = 1 - \sum_{n=1}^{\infty} \left(\frac{n}{N}\right)^{2}$$

inner brackets: $D = 1 - \left(\left(\frac{96}{125}\right)^{2} + \left(\frac{4}{125}\right)^{2} + \left(\frac{22}{125}\right)^{2} + \left(\frac{3}{125}\right)^{2}\right)^{2}\right)$
indices: $D = 1 - \left(0.768^{2} + 0.032^{2} + 0.176^{2} + 0.024^{2}\right)$
addition: $D = 1 - 0.6224 = 0.3776 = 0.38 (2.d.p)$
 $O = 0.1 \text{ mm}$ $I = ?$ $M = 50$ $I = M \times O = 50 \times 0.1 \text{ mm} =$
Area = 5.3 cm₂ radius? $A = \pi r_{2}$
 $5.3 = \pi r_{2}$ $r_{2} = \frac{5.3}{1.687} = 1.687$ $r_{2} = \sqrt{1.687} = 1.3 \text{ cm}$

Or
$$A = \pi r_2$$
 $r_2 = \frac{A}{\pi}$ $r = \sqrt{\frac{A}{\pi}}$ $r = \sqrt{\frac{5.3}{\pi}} = 1.3 \text{ cm}$

8 7.25 × 10₋₆ m (7.25 μm)

9
$$a = \frac{\left(\frac{34}{100}\right) \times 135}{2} = 22.95$$

10 cardiac output = stroke volume x heart rate

stroke volume =
$$\frac{2.7}{77}$$
 = 0.035 dms

11 Substitute in the known values: $0.84 = \frac{\text{biomass transfer}}{25} \times 100$

Rearrange the equation to give: biomass transfer = $\frac{0.84}{100} \times 25 = 0.21$ kg

4 Magnification

- **1 a** ×120 **b** ×600
- **2** ×26 000
- **3** 0.88 μm

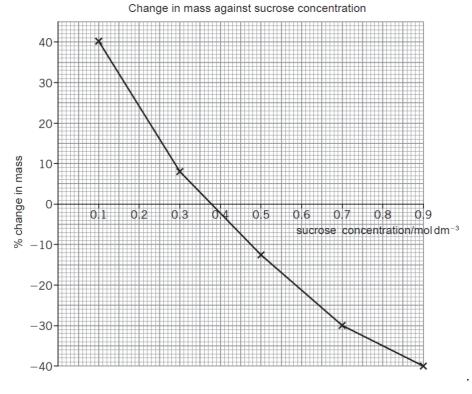
AQA Biology

5 Percentages and uncertainty

1 a $\frac{2240}{3600000}$ × 100 = 0.06%

b $\frac{480}{3600000}$ × 100 = 0.013%

2 5.88%
 3


Sucrose conc. / mol dm-3	Initial mass / g	Final mass / g	Mass change / g	Percentage change in mass
0.9	1.79	1.06	-0.73	-40.8%
0.7	1.86	1.30	-0.56	-30.1%
0.5	1.95	1.70	-0.25	-12.8%
0.3	1.63	1.76	+0.13	+8.0%
0.1	1.82	2.55	+0.73	+40.1%
a 1 cm₃	b 0.005 s	c 0.05 °C		

4 5

1

Measurement made	Equipment used	Absolute error	Relative error
Length of a fluid column in a respirometer is 6 mm	mm scale	0.5 mm	$\frac{0.5}{6} \times 100 = 8.3\%$
Volume of a syringe is 12 cm ₃ of liquid	0.5 cm3 divisions	0.25 cm₃	$\frac{0.25}{12} \times 100 = 2.1\%$
Change in mass of 1.6 g	balance with 2 d.p.	0.005 g	$\frac{0.005 \times 2}{1.6} \times 100 = 0.6\%$

6 Scatter graphs and lines of best fit

 $\ensuremath{\mathbb{C}}$ Oxford University Press 2019 \hfill This resource sheet may have been changed from the original.

AQA Biology

c Table 1: Strong correlation. Positive at the start. As light intensity increases, the increase in the rate of photosynthesis decreases (so the graph levels off).
 Table 2: Strong correlation. Negative at the start. As time increases, the rate of the decrease of the concentration decreases (so the graph levels off).